但是这种“好"的性质,在无穷维空间中并不成立,因为按照泛函分析的结论, 6无穷维赋范空间E中的单位球(Unit Ball)是紧的,当且仅当E是有限维的。甚至在有T3分离性的Hausdorff拓扑线性空间中,单位球的紧性也不存在①。
基于276个网页-相关网页
unit ball in cn cn中的单位球
unit ball of 单位球
a unit ball 单位球
the unit ball 单位球
open unit ball 开单位球
Unit ball graphs 单位圆球图
stable unit ball 稳定的单位球
closed unit ball 闭单位球
Complex unit ball 单位球面
Here (t, x) denotees the time and space variables , G is the gravitational constant. wN is the measure of the unit ball in RN , and P is the pressure satisfying the following state equation:where 7 > 1 is the adiabatic exponent, with the entropy function S=S(t,x) in The system (0.1) is compressible Euler equations; the gravitional potential is determined by the density distribution of the gas itself through the Posson equation the fourth equation of (0.1).
∈R+×RN表示时间和空间变量,G是引力常数,ωN是RN中单位球体积;P是压力,并满足以下方程: P=P(ρ,S)=eSργ, (0.2)其中指数γ>1是绝热常数,S=S(t,x)是R+×RN中的熵函数。 (0.1)是可压缩的Euler方程组;由(0.1)第四个方程知道,引力势能是由星体本身的密度分布决定的。
参考来源 - 旋转状态下Euler·2,447,543篇论文数据,部分数据来源于NoteExpress
We revisit the classical extremal problem on Cartan domains. We first establish theorems for the extremal problem between Cartan domain and the unit ball.
研究了Cartan域上的极值问题。建立Cartan域的单位球之间极值问题的一个定理并给出它的一个应用。
The relation between the completeness of several local convex topology in normed vector space and that of induction topology of its unit ball was pointed out in this paper.
本文指出了赋范线性空间上的一些局部凸拓扑的完备性与它的单位球上相应的诱导拓扑的完备性之间的关系。
Certain corrective actions of this guide may not be feasible with the Compact Ball Valve (sealed unit).
对于紧凑型球阀(密封装置),本指南的某些纠正措施可能并不可行。
应用推荐